Revisiting the reticulum: feedforward and feedback contributions to motor program parameters in the crab cardiac ganglion microcircuit.
نویسندگان
چکیده
The neurogenic heartbeat of crustaceans is controlled by the cardiac ganglion (CG), a central pattern generator (CPG) microcircuit composed of nine neurons. In most decapods, five "large" motor neurons (MNs) project from the CG to the myocardium, where their excitatory synaptic signals generate the rhythmic heartbeat. The processes of four "small" premotor neurons (PMNs) are confined to the CG, where they provide excitatory drive to the MNs via impulse-mediated chemical signals and electrotonic coupling. This study explored feedforward and feedback interactions between the PMNs and the MNs in the CG of the blue crab (Callinectes sapidus). Three methods were used to compare the activity of the MNs and the PMNs in the integrated CG to their autonomous firing patterns: 1) ligatures were tightened on the ganglion trunk that connects the PMNs and MNs; 2) TTX was applied focally to suppress selectively PMN or MN activity; and 3) sucrose pools were devised to block reversibly PMN or MN impulse conduction. With all treatments, the PMNs and MNs continued to produce autonomous rhythmic bursting following disengagement. Removal of PMN influence resulted in a significantly reduced MN duty cycle that was mainly attributable to a lower autonomous burst frequency. Conversely, after removal of MN feedback, the PMN duty cycle was increased, primarily due to a prolonged burst duration. Application of sucrose to block impulse conduction without eliminating PMN oscillations disclosed significant contributions of spike-mediated PMN-to-MN signals to the initiation and prolongation of the MN burst. Together, these observations support a view of the Callinectes CG composed of two classes of spontaneously bursting neurons with distinct endogenous rhythms. Compartmentalized feedforward and feedback signaling endow this microcircuit with syncytial properties such that the intrinsic attributes of the PMNs and MNs both contribute to shaping all parameters of the motor patterns transmitted to the myocardium.
منابع مشابه
Cardiac Ganglion Microcircuit
2 Revisiting the Reticulum: Feedforward and Feedback 3 Contributions to Motor Program Parameters in the Crab 4 Cardiac Ganglion Microcircuit 5 6 7 Keyla García-Crescioni and Mark W. Miller 8 9 10 11 Institute of Neurobiology and Department of Anatomy & Neurobiology 12 University of Puerto Rico Medical Sciences Campus 13 201 Blvd del Valle, San Juan, Puerto Rico 00901 14 15 16 17 Address for cor...
متن کاملThe effect of self-control feedback on the learning of generalized motor program and parameters during physical and observational practice
The purpose of this study was to examine the effect of self-control feedback on the learningof generalized motor program and parameters during physical and observational practice. Participants (n=90) were randomly assigned to physical and observational practice (self-control, yoked and instructor KR) groups. They practiced a sequential timing task. The task required participants to press four k...
متن کاملCortical Feedback Regulates Feedforward Retinogeniculate Refinement
According to the prevailing view of neural development, sensory pathways develop sequentially in a feedforward manner, whereby each local microcircuit refines and stabilizes before directing the wiring of its downstream target. In the visual system, retinal circuits are thought to mature first and direct refinement in the thalamus, after which cortical circuits refine with experience-dependent ...
متن کاملModulation of an integrated central pattern generator-effector system: dopaminergic regulation of cardiac activity in the blue crab Callinectes sapidus.
Theoretical studies have suggested that the output of a central pattern generator (CPG) must be matched to the properties of its peripheral effector system to ensure production of functional behavior. One way that such matching could be achieved is through coordinated central and peripheral modulation. In this study, morphological and physiological methods were used to examine the sources and a...
متن کاملThe Electromyographic Feedback and Feedforward Activity of Selected Lower Extremity Muscles During Toe-in Landing in Female Athletes
Background: Positioning the legs in performing spike technique significantly contributes to the development and prevention of lower limb injuries. The present study aimed to evaluate and compare the feedback and feedforward activaties of selected lower limb muscles during triple jump spike with and without toe-in landing in female volleyball players. Methods: In this controlled-laboratory stud...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 106 4 شماره
صفحات -
تاریخ انتشار 2011